

Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 9657-9659

Tetrahedron Letters

A phloroglucinol derivative with a new carbon skeleton from Hypericum perforatum (Guttiferae)

Jien Wu,^a Xiao-Fang Cheng,^a Leslie J. Harrison,^{a,*} Swee-Hock Goh^b and Keng-Yeow Sim^a

^aDepartment of Chemistry, University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore ^bForest Research Institute of Malaysia, Kepong, Kuala Lumpur 52109, Malaysia

> Received 27 July 2004; revised 27 October 2004; accepted 1 November 2004 Available online 11 November 2004

Abstract—Examination of the aerial parts of a Chinese herbal medicine yielded a novel metabolite, perforatumone 1, which is characterized by its unique carbon skeleton. Its structure was determined by detailed spectroscopic analysis. © 2004 Elsevier Ltd. All rights reserved.

Hypericum perforatum provides an interesting array of polyprenylated phloroglucinol derivatives.¹ Their antidepressant activity has sparked great interest in the chemistry and biochemistry of the constituents of this species.^{2–4} In this study, perforatumone **1** was isolated together with other known compounds⁵ including hyperforin **2**.

Perforatumone 1 was obtained as a colorless oil, $[\alpha]_D^{29}$ +153 (*c* 2.9, acetone), from the hexane soluble part (330g) of *H. perforatum* (aerial parts, collected from Shanxi province of PR China). The molecular formula of C₃₅H₅₂O₅ (EIMS, *m/z* 552.3830, [M]⁺), the IR absorptions of the carbonyl groups (1814, 1760, 1736,

and 1707 cm⁻¹) and the NMR data of 1 (Table 1) indicated that the structure was different from the known compounds hyperforin 2 and its derivatives, previously isolated from this species.⁶ However, 1 exhibited prominent NMR signals showing the presence of four isoprenyl groups, for example, four olefinic protons at $\delta_{\rm H}$ 4.72 (t, J = 7.0 Hz), $\delta_{\rm H}$ 4.91 (t, J = 6.6 Hz), $\delta_{\rm H}$ 4.95 (t, J = 7.1 Hz), and $\delta_{\rm H}$ 5.00 (dd, J = 7.0, 1.2 Hz) as well as four pairs of olefinic carbons between $\delta_{\rm C}$ 113.5 and 138.8 (Table 1) and thus showed some similarities to hyperforin. The methyl groups at $\delta_{\rm H}$ 1.06 (d, J = 6.7 Hz) and $\delta_{\rm H}$ 1.03 (d, J = 6.7 Hz) and the methine proton at $\delta_{\rm H}$ 2.61 (septet, J = 6.7 Hz) suggested the presence of an isopropyl ketone unit as is consistently found in hyperforin and its derivatives.

Two substructures in perforatumone 1 (Fig. 1) were deduced using a combination of homo- and heteronuclear 2D NMR techniques. The presence of a lactone carbonyl carbon ($\delta_{\rm C}$ 171.8, C-1) and the HMBC connectivities between the methylene proton at $\delta_{\rm H}$ 2.57 (H-26a) and carbons at $\delta_{\rm C}$ 95.4 (C-8), 113.5 (C-27), and 206.2 (C-7), and between the methylene proton at $\delta_{\rm H}$ 2.11 (H-31a) and the carbons at $\delta_{\rm C}$ 206.2 (C-7), 56.7 (C-6), and 171.8 (C-1) led to the identification of substructure A. Substructure **B** was also assigned by interpretation of the HMBC spectra. The important correlations were those (a) between Me-14 at $\delta_{\rm H}$ 1.08 and the carbons at $\delta_{\rm C}$ 40.0 (C-4), 62.6 (C-9), 48.3 (C-3), and 38.6 (C-15); (b) between the methine singlet at $\delta_{\rm H}$ 4.47 (H-9) and the ketone carbonyl groups at $\delta_{\rm C}$ 206.2 (C-10) and 196.9 (C-2), and the quaternary carbon at $\delta_{\rm C}$ 48.3 (C-3); (c) between the methyl group at $\delta_{\rm H}$ 1.03 (H-12) and the methine carbon at $\delta_{\rm C}$ 42.4 (C-11), the carbonyl

Keywords: Perforatumone; Hyperforin; *Hypericum perforatum*; Guttiferae.

^{*} Corresponding author. Tel.: +65 6874 2687; fax: +65 6779 1691; e-mail: chmhl@nus.edu.sg

^{0040-4039/\$ -} see front matter © 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.11.007

Table 1. NMR data of perforalactone 1

	¹ H NMR	¹³ C NMR	HMBC
1	_	171.8	
2	_	196.9	
3	_	48.3	
4	1.56, m ^a	40.0	
5	1.56, m ^a	36.5	C-3, C-4, C-6, C-7
6		56.7	
7	_	206.2	
8	_	95.4	
9	4.47, s	62.6	C-2, C-3, C-4, C-8, C10, C-14
10	_	206.2	
11	2.61, septet, $J = 6.7 \text{Hz}$	42.4	C-12, C-13
12	1.06, d, J = 6.7 Hz	18.9	C-10, C-11, C-13
13	1.03, d, $J = 6.7 \mathrm{Hz}$	18.8	C-10, C-11, C-12
14	1.08, s	17.8	C-3, C-4, C-9, C-15
15	1.30, ddd, J = 16.0, 12.4, 4.2 Hz	38.6	C-3, C-4, C-9
	1.47, ddd, J = 16.0, 12.4, 5.4 Hz		
16	1.87, m ^a	21.6	C-17, C-18
	1.95, m ^a		
17	5.00, br dd, $J = 7.0$, $3.0 \mathrm{Hz}$	122.5	C-19, C-20
18	_	132.4	
19	1.67, br s	25.7	C-17, C-18, C-20
20	1.63, br s	18.0	C-17, C-18, C-19
21	a. 1.75, d, <i>J</i> = 6.6 Hz	28.8	C-5, C-22, C-23
	b. 2.00, d, <i>J</i> = 6.6 Hz		
22	4.91, br t, $J = 6.6 \mathrm{Hz}$	122.8	C-24, C-25
23	_	134.8	
24	1.75, br s	25.9	C-22, C-23, C-25
25	1.59, br s	18.0	C-22, C-23, C-24
26	a. 2.57, dd, <i>J</i> = 7.1, 17.3 Hz	29.7	C-7, C-8, C-9, C-27, C-28
	b. 2.86, dd, <i>J</i> = 7.1, 17.3 Hz		
27	4.95, br t, $J = 7.1 \mathrm{Hz}$	113.5	C-29, C-30
28	_	138.8	
29	1.65, br s	25.7	C-27, C-28, C-30
30	1.65, br s	18.2	C-27, C-28, C-29
31	a. 2.11, dd, <i>J</i> = 7.0, 15.0 Hz	27.5	C-6, C-7, C-32, C-33
	b. 2.51, dd, <i>J</i> = 7.0, 15.0 Hz		
32	4.72, br t, $J = 7.0 \mathrm{Hz}$	117.5	C-34, C-35
33	_	136.3	
34	1.68, br s	25.8	C-32, C-33, C-35
35	1.61, br s	18.0	C-32, C-33, C-34

Recorded in CDCl₃ at 500 MHz (1 H NMR) and 125 MHz (13 C NMR).

^a Approximate position of unresolved signal.

Figure 1. Substructures of perforatumone 1 and selected HMBC correlations.

group at $\delta_{\rm C}$ 206.2 (C-10) and the methyl group at $\delta_{\rm C}$ 18.8 (C-13); and (d) between the methylene protons at $\delta_{\rm H}$ 1.56 (H-5) and the quaternary carbon at $\delta_{\rm C}$ 48.3 (C-3). Substructures **A** and **B** were linked by correlations between H-5 and C-6 and C-7. Correlations from H-26 to C-8 and C-9 established that the final bond was therefore between C-8 and C-9.

Figure 2. Selected ROESY correlations of perforatumone 1.

The relative stereochemistry of **1** was determined using a ROESY experiment (Fig. 2). The key ROESY correlations were between H-9 and the H-14 methyl and H-21a, which indicated that C-14 and C-21 were on the same side of the seven-membered ring. In the ROESY spectrum, a correlation between H-9 and H-26 was observed. Because models showed that the conformation of **1** was flexible, the presence of a correlation between

Figure 3. Postulated biosynthetic pathway for perforatumone 1.

H-9 and H-26 was not sufficient to determine the stereochemistry of C-6 and C-8. However, based on the mechanism of formation of 1 as shown in Figure 3, stereochemistry at C-3, C-4, and C-6 would remain unchanged. Stereochemical constraints require the lactone ring to be fused to the seven-membered ring in a *cis* fashion. The stereochemistry of 1 is therefore as shown in Figure 2.

It is reasonable to assume that 1 is derived from hyperforin 2, which has known absolute stereochemistry. A plausible biosynthetic route involving a Baeyer–Villiger ring cleavage and a final pinacol rearrangement is given in Figure 3. The absolute configuration of 1 has not been determined but is assumed to be the same as for 2.

References and notes

- 1. Grossman, R. B.; Jacobs, H. Tetrahedron Lett. 2000, 41, 5165–5169.
- 2. Hippius, H. Curr. Med. Res. Opin. 1998, 14, 171-184.
- 3. Shan, M. D.; Hu, L. H.; Chen, Z. L. J. Nat. Prod. 2001, 64, 127–130.
- Verotta, L.; Lovaglio, E.; Sterner, O.; Appendino, G.; Bombardelli, E. *Eur. J. Org. Chem.* 2004, 2004, 1193– 1197.
- 5. Compounds isolated: perforatumone (30 mg, 0.0006%), hyperforin (45 mg, 0.0009%), furohyperforin (50 mg, 0.001%), and 8-hydroxyhyperforin 8,1-hemiacetal (50 mg, 0.001%).
- Verotta, L.; Appendino, G.; Jakupovic, J.; Bombardelli, E. J. Nat. Prod. 2000, 63, 412–415.